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a b s t r a c t 

Most of the existing methods for dam behavior modeling presuppose temporal immutability of the mod- 

eled structure and require a persistent set of input parameters. In real-world applications, permanent

structural changes and failures of measuring equipment can lead to a situation in which a selected model

becomes unusable. Hence, the development of a system capable to automatically generate the most ad- 

equate dam model for a given situation is a necessity. In this paper, we present a self-tuning system for

dam behavior modeling based on artificial neural networks (ANN) optimized for given conditions using

genetic algorithms (GA). Throughout an evolutionary process, the system performs near real-time adjust- 

ment of ANN architecture according to currently active sensors and a present measurement dataset. The

model was validated using the Grancarevo dam case study (at the Trebisnjica river located in the Re- 

public of Srpska), where radial displacements of a point inside the dam structure have been modeled

as a function of headwater, temperature, and ageing. The performance of the system was compared to

the performance of an equivalent hybrid model based on multiple linear regression (MLR) and GA. The

results of the analysis have shown that the ANN/GA hybrid can give rather better accuracy compared

to the MLR/GA hybrid. On the other hand, the ANN/GA has shown higher computational demands and

noticeable sensitivity to the temperature phase offset present at different geographical locations.

© 2016 Elsevier Ltd. All rights reserved.
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. Introduction

To describe and predict the structural behavior of dams, a

umber of statistical, deterministic and hybrid mathematical mod-

ls have been developed over the past decades. Statistical mod-

ls based on multiple linear regression (MLR) and their advanced

orms such as stepwise regression, robust regression, ridge regres-

ion and partial least squares regression have been shown to be

ore or less successful in dam modeling [1–3] . In contrast to sta-

istical modeling, deterministic models require the solving of dif-

erential equations, for which closed form solutions could be diffi-

ult or impossible to obtain [4] . Therefore, many models that are

ased on numerical methods, such as the finite element method

FE), have also been developed [5] . Recently, numerical and sta-

istical methods have been enriched with various heuristics from

he artificial intelligence (AI) domain, creating hybrid models that

ombine their advantages. 
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Some of these artificial intelligence techniques and heuristic al-

orithms are artificial neural networks (ANN) [6–10] , genetic algo-

ithms (GA) [11–13] and particle swarm optimization (PSO). In his

aper [8] , Mata presented a comparison between MLR and ANN

odels for the characterization of dam behavior under environ-

ental loads for the Alto Rabagao arch dam. Gholizadeh et al. [10]

sed a hybrid methodology with a combination of metaheuristics

GA and PSO) and neural networks to propose an efficient soft

omputing approach to achieve optimal shape design of arch dams

hat were subjected to natural frequency constraints. Gomes et al.

14] employed PSO for structural truss mass optimization on size

nd shape, considering frequency constraints. The results showed

hat the PSO algorithm performed similarly to other methods and

ven better in some cases. Several recent studies have also de-

cribed the application of artificial immune algorithm (AIA) tech-

iques, which imitate the function of a natural immune system

15,16] . Xi et al. [15] proposed an immune statistical model to re-

olve the data analysis problems of dam horizontal crest upstream-

ownstream displacements. 

In a number of papers [17–22] researchers have made a signifi-

ant effort to find optimal structures of neural networks for various

roblems. Majdi et al. [17] combined a neural network and genetic
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http://www.ScienceDirect.com
http://www.elsevier.com/locate/advengsoft
http://crossmark.crossref.org/dialog/?doi=10.1016/j.advengsoft.2016.02.010&domain=pdf
mailto:bobi@kg.ac.rs
mailto:boban.stojanovic@gmail.com
mailto:milovan.milivojevic@vpts.edu.rs
mailto:nikola.milivojevic@gmail.com
mailto:dantonijevic.kg@gmail.com
http://dx.doi.org/10.1016/j.advengsoft.2016.02.010


86 B. Stojanovic et al. / Advances in Engineering Software 97 (2016) 85–95

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Structure of feed-forward neural network.
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algorithm for predicting the deformation modulus of rock masses.

GA is utilized to find the optimal number of neurons in a hidden

layer, and the learning rates and momentum coefficients of hidden

and output layers of the network. Using a standard backpropaga-

tion gradient descent algorithm, they tested networks with linear

and sigmoid activation functions. Zhou et al. [19] presented a com-

bined procedure of the orthogonal design (OD), FE analysis, ANN

and GA for inverse modeling of the seepage/leakage problems. The

chosen neural network used the sigmoid transfer function and had

a fixed number of layers: one input layer, two hidden layers and

one output layer. The number of neurons at the hidden layers was

determined by minimizing an error function on a test dataset us-

ing a trial-and-error method. To obtain a quick training time and

high generalization accuracy, the Levenberg–Marquardt backprop-

agation algorithm (LM) combined with Bayesian regularization is

used for training of the network. In the study [18] , a hybrid finite

element–boundary element analysis (FE–BE) in conjunction with

an ANN procedure is proposed for the prediction of dynamic char-

acteristics of an existing concrete gravity dam. The conjugate gra-

dient algorithm (CGA) and the LM algorithm are implemented for

fast training of the ANNs. The authors tested neural networks with

one hidden layer where the number of neurons was determined

by a trial-and-error method. Hooshyaripor et al. [21] showed that

a three-layer ANN model is appropriate to deal with a dam breach

problem which has two inputs: the height of water behind the

dam and the volume of water behind the dam at the failure time,

and one output: the peak outflow discharge. In their study a feed-

forward neural network model with a single hidden layer is used.

Applying Hecht–Nielsen criterion [22] , it was found that an ANN

with four neurons in the hidden layer has higher performance. The

LM algorithm was employed to train the ANN model. As a transfer

function, tan-sigmoid and linear functions were employed in the

hidden and output layers, respectively. 

In our previous work we developed an adaptive system for dam

behavior modeling based on a linear regression model optimized

for given conditions using genetic algorithms [23] . Throughout the

evolutionary process, the system performs near real-time adjust-

ment of regressors in the MLR model according to currently ac-

tive sensors. Following this idea, we developed a system for dam

behavior modeling based on artificial neural networks, capable of

adapting to persistent changes in the measuring system and mea-

surement database. In order to achieve a full adaptability of the

ANN model in real-world conditions, the system should be able to

optimize all significant network parameters according to available

input sensors and historical data. To the best of our knowledge, the

existing solutions optimize a limited set of ANN parameters only,

while the other parameters are chosen arbitrarily, based on expe-

rience, literature or trial-error methods. In this paper, we present

a novel methodology and a system for automatic generation of an

ANN dam model, which optimizes all significant elements of the

ANN architecture. Guided by a variant set of input variables, the

system permanently optimizes network topology, activation func-

tions and learning algorithms in order to fit the growing mea-

surement database. Optimization of the parameters is performed

using genetic algorithms. The quality of the proposed ANN/GA hy-

brid dam models has been tested on a real-world case study and

compared to equivalent dam models based on multiple linear re-

gression and GA (MLR/GA). 

2. Theoretical background

2.1. Artificial neural network 

The ANN is a simplified mathematical model of a natural neural

network. It is a computing system made up of a number of sim-
le, interconnected processing elements or neurons, which process

nformation by a dynamic state response to external inputs [17] .

rocessing elements are grouped in layers: an input layer, one or

ore hidden layers and an output layer. The neurons (nodes) are

nterconnected by weighted links. A special class of ANN are feed-

orward networks, which propagate a signal from the input to out-

ut layer [24] . A schematic view of a feed-forward network is given

n Fig. 1 , where X denotes a vector of predictor variables, Y is a

ector of response variables, w 

(i , h ) is a column-matrix of weighting

oefficients between neurons in the input layer and the first hid-

en layer, and w 

(h , o ) is a column-matrix of weighting coefficients

etween neurons in the last hidden layer and the output layer.

he term w 

(q −1 ,q ) 
i j

denotes the weight between i th neuron from

(q − 1) th hidden layer and jth neuron from ( q )th hidden layer. In

rder to improve performance of the neural network, there is an

xtra neuron assigned to each hidden layer and the output layer,

ith the role of sending a constant signal x 0 (bias) to all neurons

n these layers. 

According to the sigma rule , the total input α(q ) 
j 

into process-

ng element j in q th layer is a weighted sum of all outputs x 
(q −1) 
i

rom the previous layer. In the same manner, the input signals into

eurons of the output layer are calculated as a function of outputs

rom the last hidden layer. When input signal α(q ) 
j 

passes through

 neuron, it is processed and transformed to the output signal x 
(q ) 
j

sing an activation function . The activation function (AF) is nec-

ssary to transform the weighted sum of all signals hitting on a

euron so as to determine its firing intensity [17] . Some of the fre-

uently used activation functions are: Gaussian , log , sigmoid , bipolar

igmoid , sine , hyperbolic tangent (TANH) . Characteristics of various

Fs are given in details in [25] . 

The aim of the learning process is to set weights to the val-

es for which the difference between desired and calculated val-

es (error function) will be minimal. One of the most popu-

ar learning algorithms that minimizes error function is a back-

ropagation algorithm . According to the backpropagation algorithm,

he error is propagated backward through the network and the

eights are adjusted during a number of iterations. The proce-

ure progresses until it reaches convergence of the calculated

nd expected outputs [17] . There are many variations of the

ackpropagation learning algorithm. In this work we used some

f the best known: The Backpropagation gradient descent algo-

ithm (BPGD) [24] and the Resilient propagation algorithm (RPROP)

26–29] . 

Design of an ANN is specified by network architecture (such

s the number of hidden layers and neurons, type of AFs, etc.)

nd learning rules. Both the architecture and learning rules are

ery important, thus good selection of these will give better per-

ormance of the network [17] . This task is still an unsolved is-

ue and most researchers use a trial-and-error method to find a
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Fig. 2. Schematic view of Genetic Algorithm.
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uitable number of hidden layers and nodes [22,30–32] . Different

deas have been stated about the required number of training data.

he number of training samples has an influence on the quality of

he model obtained. Researchers propose different sizes of training

atasets, ranging from 60% to 80% of the available data [33–35] .

he learning rules specify an initial set of weights, as well as the

earning rate η and the momentum μ in the BPGD algorithm or
+ and η− parameters in the RPROP algorithm. The range of initial

eights commonly used in literature is [ −0 . 5 , 0 . 5] [36] . In order

o reduce the impact of the stochastic nature of initial weights on

he quality of the ANN model, Messer and Kittler proposed that

he learning process should be repeated at least 5–10 times with

ifferent initial weights [17,37] . 

.2. Genetic algorithms 

Genetic algorithms are search techniques that are inspired by

he theory of natural selection, in which strong species have a

reater opportunity to survive and pass their genes on to fu-

ure generations via reproduction [38,39] . GAs are probabilis-

ic algorithms that maintain a population of individuals, P (t) =
 1 (t) , . . . , x n (t) , for the iteration (generation) t , where each individ-

al represents a potential solution to a problem. Each solution x i (t)

s evaluated to quantify its fitness. Subsequently, a new popula-

ion (iteration t + 1 ) is formed by selecting better individuals from

hose of generation t . In GA terminology, a solution vector x ∈ X is

alled an individual or chromosome and corresponds to a unique

olution x in the solution space. The chromosomes are made of

iscrete units called genes. Each gene controls one or more fea-

ures of the chromosome. In this paper, genes are assumed to be

inary digits, according to the original implementation of GAs by

olland [38] . 

GAs use two operators to generate new solutions from existing

olutions: crossover and mutation. In crossover, two chromosomes,

alled parents, are combined together to form new chromosomes,

alled offspring. The mutation operator introduces random changes

nto the characteristics of chromosomes, for the purpose of reintro-

ucing genetic diversity back into the population and assisting the

earch to escape from local optima. 

Reproduction involves selecting a set of chromosomes that will

urvive into the next generation. The procedure of a generic GA is

iven in Fig. 2. 

After the random generation and evaluation of initial solutions,

he population is subjected to the iterative process of selection,

ating (crossover), mutation and evaluation for the next iteration

generation). The iterative process is terminated when there is a

atisfactory quality of solutions or when the maximum number of

terations is reached. 
. The ANN/GA hybrid for dam behavior modeling

.1. Evolving neural network model using GA 

A full adaptability of a real-world dam model requires the abil-

ty of the model to deal with the persistent increase of a measure-

ent dataset and a variant set of predictor variables induced by

ermanent changes and malfunctions in the measuring system. In

rder to provide an ANN dam model that is fully adaptive to a vari-

nt dataset and predictors, in this paper we present a methodology

or near real-time optimization of a structural dam model based on

rtificial neural networks. This concept implies optimization of all

lements of the network with the aim to generating a model that

est describes structural dam behavior under given conditions. The

lements subjected to optimization are the number of hidden lay-

rs, the number of neurons per layer, activation functions, learning

lgorithms and learning rules. 

.1.1. ANN/GA mathematical programming model 

Let � denote the set of possible ANN models that contain at

ost N max hidden layers with a maximum of n max neurons per

ayer, where all the neurons use one of the available AFs. In addi-

ion, every single ANN model uses one of the offered learning algo-

ithms tuned with the parameters from the recommended ranges. 

Let RMSE 
(ψ) 
Test 

denote the root mean squared error that the

rained network AN N 

(ψ) from � produces using the testing

ataset. Then, a mathematical programming model to find the best

NN topology and the best choice of AF, learning algorithm, and

earning rules, can be written in the following form: 

Minimize RMSE 
(ψ) 
Test 

, AN N 

(ψ) ∈ �

Subjected to 

 

(ψ) ≤ N max (1) 

 

(ψ) ≤ n max (2) 

F (ψ) ∈ { Gaussian, sine, T AHN, ... } (3)

A 

(ψ) ∈ { BP Gradient Descent , RP ROP, ... } (4)

 ∈ [ a 
(ψ) 
min 

, a 
(ψ) 
max ] (5)

here N 

(ψ) , n (ψ) , A F (ψ) , L A 

(ψ) are the number of hidden layers,

he number of nodes in hidden layers, activation function, and

earning algorithm of neural network AN N 

(ψ) , respectively. In

q. (5) , the variable a stands for any of the parameters η, μ, η+ or
−. In addition, for the sake of computational efficiency, the same

F is used for all hidden and output neurons. 

.1.2. Genetic algorithm for the neural network optimization 

Regarding the complexity of the optimization problem, we

sed a genetic algorithm as an optimization technique, due to

ts inherent generality and robustness. The developed optimization

ethodology (ANN/GA hybrid) is based on the iterative strategy of

he GA shown in Fig. 2 , where individuals represent neural net-

orks from �. Every single individual (neural network AN N 

(ψ) )

rom the initial population is evaluated in order to determine its

tness. In our case, the networks with lower RMSE 
(ψ) 
Test

are con-

idered to be better, thus the fitness is calculated as 1 /RMSE 
(ψ) 
Test 

.

ccording to the chosen selection criterion and the elitism con-

ept, networks with the lower fitness are discarded. Through the

rocesses of crossover and mutation, a new generation of neural

etworks with different topologies, learning algorithms, activation

unctions, and learning rules is generated. Once the convergence

riterion is achieved (defined time, required accuracy...), a pop-

lation of optimized artificial neural networks is obtained. Since

here is only one optimization criterion (RMSE), the network with

he best fitness within the final population is chosen as the most

ccurate one. 
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Fig. 3. Genetic structure of an ANN/GA chromosome. 
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Fig. 5. Crossover (a) and mutation (b) operators. 
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3.1.3. ANN chromosome structure 

According to Holland’s original approach, individuals in the

population pool are in the form of binary chromosomes. The pro-

posed genetic structure of the individuals in a population pool is

shown in Fig. 3 . 

The first two groups of genes represent the number of hid-

den layers N 

(ψ) and the number of neurons n (ψ) in these layers.

Note that the number of neurons is assumed to be the same in

all hidden layers ( n 
(ψ) 
1 

= · · · = n 
(ψ) 
Nmax 

= n (ψ) ), in order to keep the

chromosome size constant over the population. The next group of

genes represents a type of activation function A F (ψ) . The L A 

(ψ) 

genes in the chromosome define the learning algorithm, while

LP 1 (ψ) and LP 2 (ψ) genes include the parameters of the learning

algorithm ( η and μ for the BPGD, or η+ and η− for the RPROP

algorithm). In order to avoid constraint violations, each of integer

variables (including enumerated activation functions and learning

algorithms) should be in the range [ 1 − 2 l ] , where l is the number

of bits in the gene representing that variable. On the other hand,

the range for each real variable is set according to recommenda-

tions, but its resolution will depend on the number of bits in that

gene. Coding variables in this way guarantees that their values will

remain inside the prescribed ranges during crossover and mutation

processes. 

Fig. 4 shows the example of two ANN individuals, where both

networks have 3 predictors and one response variable. Binary chro-

mosome AN N 

(ψ) in Fig. 4 a represents an ANN with 2 hidden lay-

ers, each with 5 neurons and the TANH activation function. For the

sake of brevity, the genes that represent the learning algorithm and

learning rules are not shown in the Figure. The AN N 

(γ ) chromo-

some, shown in Fig. 4 b, represents a coded ANN with 3 hidden lay-

ers, each with 3 neurons and a sinusoidal activation function. Here

we used a notation of the form I/N(n ) /O , where I, N, n and O are

the number of predictors, the number of hidden layers, the num-

ber of neurons per layer, and the number of response variables,

respectively. Accordingly, the topology of AN N 

(ψ) and AN N 

(γ ) indi-

viduals can be written in forms 3/2(5)/1 and 3/3(3)/1 . 

3.1.4. Genetic algorithm operators 

In this study, the single point crossover operator has been

used. Once the crossover point is randomly selected, two mating

chromosomes are cut at corresponding points, and the sections af-
Fig. 4. Examples of the genetic struc
er the cuts are exchanged ( Fig. 5 a). To avoid the local minima

roblem, each bit is independently flipped with a probability of p,

sing a bit-flip mutation operator ( Fig. 5 b) [23] . 

.1.5. Evaluation of ANN individuals 

Evaluation of each AN N 

(ψ) individual is realized as shown in

ig. 6 . The content of the chromosome defines the activation func-

ion, learning algorithm and learning rules used in the neural net-

ork represented by that individual. According to the activation

unction, the data in the learning dataset (LDS) and test dataset

TDS) are normalized. After the generation of random initial values

f weighting coefficients w i j , the learning algorithm with defined

earning rules is performed as described above. 

The learning process is aborted in the overlearning zone [31] .

n order to reduce the influence of the stochastic generation of the

nitial weight matrix ( W 

(ψ,r) 
0 

) on the quality of the AN N 

(ψ) model,

he whole procedure is repeated several times with different ini-

ial weights. Finally, the fitness of the AN N 

(ψ) individual is calcu-

ated as 1 / RMSE 
(ψ) 
Test 

= 1 / min ( RMSE 
(ψ, W 

(ψ,r) 
0 

) 

Test 
) , r = 1 , R , where R is

 number of repetitions, arbitrarily chosen by a researcher. 

.1.6. Selection 

According to the optimization criterion that is defined in the

resented mathematical programming model, all of the individu-

ls (models) are ranked based on RMSE 
(ψ) 
Test 

, ψ ∈ �. In this study,

e employed binary tournament selection, which performs a tour-

ament between pairs of individuals and selects the winners that

ass to the next generation. To assure that the best individuals al-

ays survive to the next generation, an elitism strategy has also

een used [23] . 

.2. Implementation of ANN/GA hybrid for dam behavior modeling 

In order to prove the proposed ANN/GA concept, we have de-

eloped a self-tuning software system for dam behavior modeling,

amed DEVONNA ( D am Evo lving N eural N etworks), ( Fig. 7 ). 

The structural dam behavior (1) can be considered as a black

ox that transforms the vector of input variables X (2) into the
ture of ANN/GA chromosomes. 
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Fig. 6. ANN evaluation process.

Fig. 7. Schematic view of DEVONNA software solution, a self-tuning system for dam

behavior modeling based on evolving neural networks.
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ector of output variables Y . Measurements of input variables, such

s headwater H, air temperature T a and time t (ageing), as well as

he output variables of interest, such as displacements and stresses,

re stored in the database (3). Nevertheless, if temperature mea-

urements are incomplete or unavailable, trigonometric functions

s temperature cyclic (seasonal) loadings are commonly used in

am modeling to describe deformation patterns as follows [11] : 

sin (2 · k · π · d/ 365) , k = 1 , 2 , 3 . . . 

cos (2 · k · π · d/ 365) , k = 1 , 2 , 3 . . . 
(6) 

here d is the day of the year. 

The ANN/GA hybrid randomly generates an initial population

f individuals (binary chromosomes), each representing one ANN

4). In order to find the network that best represents the histori-

al behavior of the dam, the population of the networks is opti-

ized throughout an evolutionary process (5, 6, 7, 8, 9) described

n Section 3.1 . The optimization procedure is repeated a few times

n order to reduce the effects of the inherent stochastic nature of

he GA (usually 5 times, [40,41] ). 

The final product of the DEVONNA system is the optimized

athematical model (10) based on the ANN, which can predict the

tructural dam behavior ˆ Y given the known input variables. This

odel can be further used for dam behavior prediction, analysis,

nd comparison with measurements and possible actions. 
.3. Software implementation 

The presented DEVONNA system has been developed in a Mi-

rosoft .NET software environment and comprises a data acquisi-

ion service, an MS SQL database and a module for the optimiza-

ion of ANN dam models. The special component of the system is

he interface to the Encog software library [25] , which is employed

or the processes of learning the ANN. 

. Validation of the proposed ANN/GA hybrid

The following sections present validation of the proposed

NN/GA hybrid and the developed DEVONNA system using the

ase study of modeling Grancarevo dam displacements. 

.1. Case study 

The Grancarevo dam is the first step of the hydropower system

f the Trebisnjica river in the Republic of Srpska. The dam is lo-

ated 18 km from the river source and 17 km upstream from the

ity of Trebinje, creating a reservoir of 1278 · 10 6 m 

3 ( Fig. 8 ). 

The dam body is made of 3770 0 0 m 

3 of concrete in the form

f 31 cantilever blocks, numerated from the right to the left bank

 Fig. 9 ). This dam is a double curvature arch dam (R = 185.48 m),

hich is 123 m high and has a 439.3 m long crest, with a thick-

ess of 4.6 m at the top and 26.9 m at the bottom of the dam. It

s equipped with a monitoring system to measure parameters such

s concrete conditions, water and air temperatures, the reservoir

ater level, horizontal and vertical displacements, rotation, move-

ents of joints, strain, stress, uplift pressure, foundation displace-

ents and seepage, at a total of 465 measuring points. 

Three pendulums were installed to measure radial and tangen-

ial deformations. In this paper we modeled the radial displace-

ents of point P1 at the dam crest (elevation 403 m.a.s.l.) ( Fig. 9 a),

lock 17 ( Fig. 9 b). Displacements of the point are measured us-

ng coordinometer V17-1. In fact, the dam monitoring system usu-

lly provides many outputs, which can be used in the assessment

f structural behavior. Although artificial neural networks have the

bility to model more than one output variable simultaneously, for

he sake of clarity, in this work we present the principle using only

ne output. 

The dam was built in 1967 and up to now about 14500 mea-

urements of point P1 displacements have been made. However,

here are a lot of missing values in the period between 1967 and
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Fig. 8. A view of the Grancarevo dam. 

Fig. 9. The radial displacement of point P1 (a) and the cross-section through Block 17 (b). 
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1984, thus the period from January 1984 to the end of August

2011 was chosen for modeling. For the sake of computational ef-

ficiency we used every second data, so the dataset consisted of

5042 data samples in total. According to a cross-validation strat-

egy, this dataset is divided into LDS and TDS subsets with a given

ratio [42–44] . 

The effect of hydrostatic pressure on the dam displacements

was taken explicitly into account through the headwater H. The

range of the input variable H was from 331.05 to 401.28 m. The

thermal effect was accounted by the mean daily air tempera-

ture T a (–7.10 to 32.10 °C). Thermal effects are also represented by

trigonometric functions as temperature cyclic (seasonal) loadings

which can be used to describe deformation patterns through input

variable d. The variable d represents the time elapsed from the be-

ginning of the year, ranging from 1 to 365 days. However, at dif-

ferent geographical locations, temperature oscillations can have a

phase offset from the beginning of the year. In order to test sta-

bility of the models regarding temperature phase offset, we used

dummy input variables d20 and d50 that represent phase offsets of

20 ( d20 = d + 20 ) or 50 ( d50 = d + 50 ) days, respectively. The age-

ing effect, as a function of time t , includes the influence of degra-

dation of the material properties during the structural lifetime on

measured values. As mentioned before, the radial displacement of

point P1, represented by variable y 17 , is chosen to be the output

(response) variable. The range of the displacements in the analyzed
eriod was from + 13.26 to + 64.4 mm, where radial displacements

n downstream direction are considered positive. 

An example of the learning dataset, which represents 60% of the

vailable data, is given in Fig. 10 . As an effect of hydrostatic pres-

ure, radial displacements are increased with an increase of water

evel H, and vice versa. In contrast, due to thermal expansion, ra-

ial displacements are decreased with a raise of temperature T a ,

nd vice versa. 

.2. Results 

The proposed ANN/GA methodology and the developed DE-

ONNA system were validated on the data that were measured

etween 1.1.1984 and 29.08.2011 (D.M.Y date format is used). Ac-

ording to the cross-validation strategy, we performed four series

f tests with different LDS:TDS ratios (60:40, 70:30, 75: 25 and

0:20), where learning and testing data were chosen randomly.

he obtained results were compared to the measurements and

o those calculated using an equivalent MLR/GA model presented

n [23] . 

The parameters of the GA for both hybrids were as follows:

he number of individuals in the population pool (the number of

NN or MLR models) was 70, while the number of generations was

0. Binary tournament selection accompanied with a single point

rossover and uniform mutation with a possibility of 0.9 and 0.125

ere used in the analysis. 
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Fig. 10. A learning dataset for Grancarevo dam from the period 1984–2011. 
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Fig. 11. An example of a chromosome representing an ANN individual. 
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All the tests were performed on Intel i3-3120 M CPU @2.50 GHz

ith 4 GB of memory. 

.2.1. The ANN/GA hybrid parameters and results 

The structure of the chromosome used for modeling radial dis-

lacement of point P1 is formed according to Table 1 . 

Fig. 11 shows an example of a chromosome that represents an

NN individual with 11 hidden layers, each with 20 neurons, an

PROP learning algorithm and TANH activation function. The LP1

nd LP2 parameters have values η+ = 1 . 2 and η− = 0 . 5 . 

Initial values of weighting coefficients W 0 were chosen ran-

omly from the range [ −0.5,0.5]. In order to reduce the influence
Table 1 

Structure of binary ANN chromosome. 

Genes Denotation Note 

Number of hidden layers N (ψ) 

Number of neurons in hidden layers n (ψ) 

Activation function A F (ψ) 

Learning algorithm L A (ψ) 

Learning rule LP 1 (ψ) for RPROP: η+ 

LP 1 (ψ) for BPGD: η

LP 2 (ψ) for RPROP: η−

LP 2 (ψ) for BPGD: μ

Table 2 

Quality of ANN/GA models expressed by RMSE Train and RMSE Test . 

ANN/GA RMSE Train [mm] 

Cross valid. predictors 

LDS:TDS size ratio 
H, T a 
t 

H, T a 
t, d 

H, T a 
t, d20 

H

t,

60–40 (3031:2021) 4 .3701 2 .1384 1 .8815 1 .52

70–30 (3536:1516) 4 .3745 2 .1492 2 .3184 3 .21

75–25 (3789:1263) 4 .2113 2 .0638 1 .8562 5 .89

80–20 (4042:1010) 4 .5001 1 .8538 1 .7574 1 .68
f the stochastic choice of W 0 , the learning process for each ANN

ndividual was repeated five times ( R = 5 ). 

The modeling of point P1 radial displacement was performed

or each of the LDS-TDS pairs and different predictor sets, and the

esults of the analyses are given in Table 2 . 
Range Number of bits Encoding example 

[1–32] 5 0 0 010 

2 hidden layers 

[1–64] 6 0 0 0111 

7 neurons per hidden layer 

[0–7] 3 001- Sin AF 

010- Hyperbolic tangent AF 

…

1 0-BPGD algorithm 

1-RPROP algorithm 

[1.0–1.60] 4 0 0 01 = 1.04; … ; 0101 = 1.20; 

1001 = 1.36;…

[0.2–0.95] 4 0 0 01 = 0.25; … ; 1110 = 0.90; 

1111 = 0.95 

[0–1] 4 0 0 01 = 0.15; … ; 

1001 = 0.50; … ; 1110 = 0.90; …. 

[0.4–0.9] 4 …, 1101 = 0.83; 1110 = 0.86; 

1111 = 0.90;…

RMSE Test [mm] 

predictors 

, T a 
 d50 

H, T a 
t 

H, T a 
t, d 

H, T a 
t, d20 

H, T a 
t, d50 

52 4 .6598 2 .1044 1 .8854 1 .5845 

18 4 .3759 2 .1044 2 .2654 3 .2673 

63 4 .5877 2 .0655 1 .8647 5 .8434 

11 4 .8433 2 .3182 1 .9145 1 .6739 
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Table 3 

Regressors used for modeling radial displacement of point P1 ( y 17 ). 

ρ∗ Regressors 

Water level Temperature Aging 

ρI H, H 2 , H 3 T a , T 2 a , T 3 a , T 4 a , T 5 a t , t 2 √ 

H e −T a , e −T a / 2 
√ 

t 

e −t , e −t/ 2 , e −t/ 4 

ρII H, H 2 , H 3 T a , T 2 a , T 3 a , T 4 a , T 5 a sin (2 k · π · d/ 365) , k = 1 , 2 , 4 t , t 2 √ 

H e −T a , e −T a / 2 cos (2 k · π · d/ 365) , k = 1 , 2 , 4 
√ 

t 

e −t , e −t/ 2 , e −t/ 4 

∗ Pool of regressors 

Table 4 

Quality of the MLR models expressed by RMSE Test . 

MLR/GA RMSE Train [mm] RMSE Test [mm] 

CrossValidation predictors predictors 

LDS:TDS size ratio 
H, T a 
t 

H, T a 
t, d 

H, T a 
t, d20 

H, T a 
t, d50 

H, T a 
t 

H, T a 
t, d 

H, T a 
t, d20 

H, T a 
t, d50 

60–40 (3031:2021) 5 .0362 2 .0147 2 .0125 2 .0138 5 .0891 2 .0144 2 .0120 2 .0134 

70–30 (3536:1516) 5 .1048 2 .1378 2 .1375 2 .1374 4 .9386 2 .0750 2 .0735 2 .0748 

75–25 (3789:1263) 5 .0420 2 .1504 2 .1524 2 .1539 5 .0947 2 .0170 2 .0193 2 .0237 

80–20 (4042:1010) 5 .0556 2 .0514 2 .0520 2 .0513 5 .1230 2 .4311 2 .4339 2 .4370 
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Due to the complexity of neural networks the average dura-

tion of model generation varied from 1.5 to 5 h. Models with in-

put variables H, T a and t showed stable behavior for all predefined

LDS:TDS ratios. The RMSE Test for these cases was approximately

4.5 mm (9% of the point P1 displacement range). 

Including variable d (day of the year), the quality of the model

was significantly improved, so the RMSE Test for predictor set H,

T a , t and d had a value of approximately 2 mm, which is about

4% of the point P1 displacement range. Nevertheless, in tests with

dummy predictors d 20 and d 50 , a certain instability of model qual-

ity for various LDS:TDS ratios was noticed. 

In more than 90% of tests, neural networks with the best char-

acteristics have used the hyperbolic tangent activation function

(TANH). The most accurate ANN model ( RMS E Test = 2 . 0655 mm )

was obtained for predictors H, T a, t and d with 75:25 LDS:TDS ra-

tio. The optimized neural network had 5 hidden layers, each with

30 neurons. The activation function was TANH, while the learning

algorithm was RPROP with η+ = 1 . 15 and η− = 0 . 65 . The optimiza-

tion process took about 135 min. 

4.2.2. The MLR/GA hybrid parameters and results 

With the aim of making the ANN/GA and MLR/GA dam models

comparable, the complexity of multiple linear regression models

was not constrained (complexity parameter in the MLR/GA hybrid

[23] was set to λ = 0 ). We have created two pools of possible re-

gressors ( ρI and ρII ) that describe the radial displacements of point

P1, contributed by hydrostatic pressure ( H), temperature variation

( T a ), and ageing ( t). Similarly to ANN models, variable d was intro-

duced for modeling the thermal effects represented by trigonomet-

ric functions as temperature cyclic (seasonal) loadings ( Table 3 .). 

In the pool ρI we considered the set of 17 potential regres-

sors containing all of the available variables without trigonometric

forms. The pool ρII had 25 regressors which covered all predictors

in various forms, including the trigonometric form of input variable

d. In order to test the robustness to temperature phase offset, we

performed additional analyses where input variable d was replaced

by dummy variables d20 and d50 . 

The results obtained using the MLR/GA hybrid for cross-

validation tests are given in Table 4 . 

In the case when there were no trigonometric regressors in

the pool ( ρ set of regressors), errors of the models were approx-
I 
mately 5 mm (10% of the point P1 displacement range). After in-

luding variable d and trigonometric regressors, the error RMSE Test 

as reduced to approximately 2 mm, which is about 4% of the

oint P1 displacement range. Usage of dummy variables d20 and

50 instead of variable d had no significant influence on the error.

The error RMSE Test for all cross-validation tests was approxi-

ately 2 mm, except for LDS:TDS = 80:20, where the RMSE Test 

as a bit higher, about 2.43 mm. 

The best of all optimized models had the error RMSE Test =
.0144 mm, which was obtained for LDS:TDS = 60:40, the set of

redictors { H, T a , t, d} and 22 regressors from the pool ρII ( Eq. 7 ): 

 17 = (7 . 906e + 05) + (5 . 974e + 03) · H 

− (5 . 482e + 00) · H 

2 + (0 . 020e − 03) · H 

3 

− (1 . 215e + 05) ·
√ 

H − (1 . 591e − 01) · T a 

− (1 . 682e − 02) · T 2 a + (2 . 623e − 03) · T 3 a 

− (1 . 360e − 04) · T 4 a + (2 . 148e − 06) · T 5 a 

+ (3 . 656e − 03) · ( e −T a ) 

+ (8 . 787e + 00) · sin (2 · π · d/ 365) 

+ (8 . 795e − 02) · sin (4 · π · d/ 365) 

+ (4 . 055e + 00) · cos (2 · π · d/ 365) 

+ (8 . 806e − 01) · cos (4 · π · d/ 365) 

+ (8 . 543e − 02) · cos (6 · π · d/ 365) 

+ (1 . 186e − 01) · cos (8 · π · d/ 365) 

+ (6 . 263e + 03) · t − (5 . 263e + 01) · t 2 

− (3 . 819e + 04) ·
√ 

t 

− (5 . 435e + 04) · e −t + (1 . 334e + 04) · e −t/ 2 

− (4 . 239e + 04) · e −t/ 4 (7)

The optimization of MLR models took 5 to 10 min. 

.3. Discussion 

Fig. 12 shows the aggregated results of the performed tests of

he ANN/GA and MLR/GA hybrids, where the quality of the models

s expressed by the RMSE Test . 

It can be seen from the Figure that, in the analyses where H, T a 
nd t were used as input variables, the ANN/GA hybrid had shown
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Fig. 12. RMSE Test values for different sets of predictors and LDS:TDS ratios in ANN and MLR models. 

Fig. 13. Average values of RMSE Test for different subsets of predictors. 

b  

w  

t  

5

 

n  

R  

p  

o  

o  

l

 

a  

t  

i  

a  

t  

s  

(  

p  

s

 

A  

c  

d  

i

 

e  

t  

A  
etter accuracy than MLR/GA. The RMSE Test of the ANN models

as approximately 4.5 mm, which is about 10% lower compared

o the RMSE Test of the MLR/GA hybrid, which was approximately

 mm. 

The quality of both the ANN/GA and MLR/GA hybrids was sig-

ificantly increased when input variable d was introduced, so the

MSE Test was reduced to a value of approximately 2 mm. The im-

rovement of the quality of the ANN and MLR models that use day

f the year as an input variable can be explained by the capacity

f variable d to better represent the temperature cyclic (seasonal)

oadings. 

The tests in which variable d was replaced by dummy vari-

bles d20 and d50 showed that ANN models were unstable when

emperature offset was present. The instability of ANN models

s particularly noticeable when sets of predictors contained vari-
ble d50 ( Fig. 12 a), where RMSE Test values varied from 1.6 mm

o 5.84 mm. In contrast to the ANN models, MLR models were

hown as very stable in tests with dummy variables d20 and d50

 Fig. 12 b). The stability of MLR models can be explained by the ca-

acity of trigonometric regressors to model phase offset by simple

uperposition of sine and cosine functions. 

Fig. 13 shows the average values of RMSE Test errors of the

NN/GA and MLR/GA models for each of the predictor subsets. It

an be seen from the figure that the average error in tests with

ummy variable d50 is also significantly worse when the ANN/GA

s used. 

Regarding computational costs, the average time needed to gen-

rate an optimized ANN model is dramatically higher than the

ime spent to generate an equivalent MLR model (1.5 to 5 h for the

NN/GA compared to 5–10 min for the MLR/GA). The time to reach
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a trained model can further increase with the expansion of learn-

ing dataset. However, in dam modeling we usually deal with daily

measurements during few decades, which is up to 10 thousands

data samples. In this study we have used a learning dataset of

about 5 thousands data samples, so the presented computational

times can be considered as an average or near-worst scenario. On

the other hand, although the maximal number of hidden layers

and the maximal number of nodes per layer were set to 32 and 64

(see Table 1 ), the most of optimized models have consisted of 5–

7 hidden layers with 20–30 neurons. Therefore, the computational

times could be significantly reduced by narrowing GA constraints

to reasonable values (for example, maximum 8 hidden layers and

maximum 32 nodes per layer). 

5. Conclusion 

In this paper, DEVONNA, the self-tuning software system for

dam behavior modeling based on an evolving artificial neural net-

work is presented. In order to deal with the variant set of pre-

dictor variables and the permanently increasing database of mea-

surements in real-world problems, we developed a methodology

for the generation of an ANN dam model that is optimized for

given conditions using genetic algorithms. In contrast to the exist-

ing solutions, permanent variability of inputs and learning datasets

require a model where most of the ANN parameters, such as the

number of hidden layers, number of neurons per layer, activa-

tion function, learning algorithm and learning parameters are opti-

mized. According to the corresponding mathematical programming

model, we developed an automated system based on genetic algo-

rithms that adapts an ANN network to fit currently active sensors

and is learned using the latest historical data. 

The developed ANN/GA hybrid was validated using the Grancar-

evo dam case study (at the Trebisnjica river located in the Re-

public of Srpska), in which the radial displacements of a point in-

side the dam structure as a function of the headwater, temperature

and time have been modeled. In order to test performances of the

ANN/GA hybrid, the results were compared to measurements and

to those obtained by an equivalent MLR/GA hybrid. 

The tests performed have shown that the developed ANN/GA

hybrid can give prediction of structural dam behavior with ap-

proximately 10% better accuracy compared to models based on the

MLR/GA concept. However, in contrast to MLR models, which are

resistant to the temperature phase offset present at different geo-

graphical locations, the ANN models showed very unstable behav-

ior under such conditions. In order to keep the accuracy advantage

over MLR models, ANN models should be manually tuned if day

of the year is used as an input parameter. In addition, generating

an optimized ANN dam model can last for several hours, which

is significantly longer than the 5 to 10 min needed to generate an

equivalent MLR model. This drawback of the ANN/GA hybrid can be

overcome by using parallel frameworks for GA optimization such

as WoBinGO [45] , which provides almost linear speed-up of evo-

lutionary algorithms. Using WoBinGO on an average Grid infras-

tructure consisting of hundred nodes would shorten computational

time of the ANN/GA hybrid to a few minutes. 

The main limitation of this approach lies in the fact that it does

not directly consider mechanical properties and any possible dam-

age. Additional analysis in the form of non-destructive tests (static

and dynamical), computational mechanical modeling and inverse

analysis will also be required. 
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